3.383 \(\int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx\)

Optimal. Leaf size=233 \[ -\frac {11 i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {11 i}{64 a^3 d \sqrt {a+i a \tan (c+d x)}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{96 a^2 d (a+i a \tan (c+d x))^{3/2}}+\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{56 d (a+i a \tan (c+d x))^{7/2}}+\frac {11 i}{80 a d (a+i a \tan (c+d x))^{5/2}} \]

[Out]

-11/128*I*arctanh(1/2*(a+I*a*tan(d*x+c))^(1/2)*2^(1/2)/a^(1/2))/a^(7/2)/d*2^(1/2)+11/64*I/a^3/d/(a+I*a*tan(d*x
+c))^(1/2)+11/36*I*a/d/(a+I*a*tan(d*x+c))^(9/2)-1/2*I*a^2/d/(a-I*a*tan(d*x+c))/(a+I*a*tan(d*x+c))^(9/2)+11/56*
I/d/(a+I*a*tan(d*x+c))^(7/2)+11/80*I/a/d/(a+I*a*tan(d*x+c))^(5/2)+11/96*I/a^2/d/(a+I*a*tan(d*x+c))^(3/2)

________________________________________________________________________________________

Rubi [A]  time = 0.14, antiderivative size = 233, normalized size of antiderivative = 1.00, number of steps used = 9, number of rules used = 4, integrand size = 26, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.154, Rules used = {3487, 51, 63, 206} \[ -\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{96 a^2 d (a+i a \tan (c+d x))^{3/2}}+\frac {11 i}{64 a^3 d \sqrt {a+i a \tan (c+d x)}}-\frac {11 i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{56 d (a+i a \tan (c+d x))^{7/2}}+\frac {11 i}{80 a d (a+i a \tan (c+d x))^{5/2}} \]

Antiderivative was successfully verified.

[In]

Int[Cos[c + d*x]^2/(a + I*a*Tan[c + d*x])^(7/2),x]

[Out]

(((-11*I)/64)*ArcTanh[Sqrt[a + I*a*Tan[c + d*x]]/(Sqrt[2]*Sqrt[a])])/(Sqrt[2]*a^(7/2)*d) + (((11*I)/36)*a)/(d*
(a + I*a*Tan[c + d*x])^(9/2)) - ((I/2)*a^2)/(d*(a - I*a*Tan[c + d*x])*(a + I*a*Tan[c + d*x])^(9/2)) + ((11*I)/
56)/(d*(a + I*a*Tan[c + d*x])^(7/2)) + ((11*I)/80)/(a*d*(a + I*a*Tan[c + d*x])^(5/2)) + ((11*I)/96)/(a^2*d*(a
+ I*a*Tan[c + d*x])^(3/2)) + ((11*I)/64)/(a^3*d*Sqrt[a + I*a*Tan[c + d*x]])

Rule 51

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^(n + 1
))/((b*c - a*d)*(m + 1)), x] - Dist[(d*(m + n + 2))/((b*c - a*d)*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^n,
x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && LtQ[m, -1] &&  !(LtQ[n, -1] && (EqQ[a, 0] || (NeQ[
c, 0] && LtQ[m - n, 0] && IntegerQ[n]))) && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 3487

Int[sec[(e_.) + (f_.)*(x_)]^(m_)*((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Dist[1/(a^(m - 2)*b
*f), Subst[Int[(a - x)^(m/2 - 1)*(a + x)^(n + m/2 - 1), x], x, b*Tan[e + f*x]], x] /; FreeQ[{a, b, e, f, n}, x
] && EqQ[a^2 + b^2, 0] && IntegerQ[m/2]

Rubi steps

\begin {align*} \int \frac {\cos ^2(c+d x)}{(a+i a \tan (c+d x))^{7/2}} \, dx &=-\frac {\left (i a^3\right ) \operatorname {Subst}\left (\int \frac {1}{(a-x)^2 (a+x)^{11/2}} \, dx,x,i a \tan (c+d x)\right )}{d}\\ &=-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}-\frac {\left (11 i a^2\right ) \operatorname {Subst}\left (\int \frac {1}{(a-x) (a+x)^{11/2}} \, dx,x,i a \tan (c+d x)\right )}{4 d}\\ &=\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}-\frac {(11 i a) \operatorname {Subst}\left (\int \frac {1}{(a-x) (a+x)^{9/2}} \, dx,x,i a \tan (c+d x)\right )}{8 d}\\ &=\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{56 d (a+i a \tan (c+d x))^{7/2}}-\frac {(11 i) \operatorname {Subst}\left (\int \frac {1}{(a-x) (a+x)^{7/2}} \, dx,x,i a \tan (c+d x)\right )}{16 d}\\ &=\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{56 d (a+i a \tan (c+d x))^{7/2}}+\frac {11 i}{80 a d (a+i a \tan (c+d x))^{5/2}}-\frac {(11 i) \operatorname {Subst}\left (\int \frac {1}{(a-x) (a+x)^{5/2}} \, dx,x,i a \tan (c+d x)\right )}{32 a d}\\ &=\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{56 d (a+i a \tan (c+d x))^{7/2}}+\frac {11 i}{80 a d (a+i a \tan (c+d x))^{5/2}}+\frac {11 i}{96 a^2 d (a+i a \tan (c+d x))^{3/2}}-\frac {(11 i) \operatorname {Subst}\left (\int \frac {1}{(a-x) (a+x)^{3/2}} \, dx,x,i a \tan (c+d x)\right )}{64 a^2 d}\\ &=\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{56 d (a+i a \tan (c+d x))^{7/2}}+\frac {11 i}{80 a d (a+i a \tan (c+d x))^{5/2}}+\frac {11 i}{96 a^2 d (a+i a \tan (c+d x))^{3/2}}+\frac {11 i}{64 a^3 d \sqrt {a+i a \tan (c+d x)}}-\frac {(11 i) \operatorname {Subst}\left (\int \frac {1}{(a-x) \sqrt {a+x}} \, dx,x,i a \tan (c+d x)\right )}{128 a^3 d}\\ &=\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{56 d (a+i a \tan (c+d x))^{7/2}}+\frac {11 i}{80 a d (a+i a \tan (c+d x))^{5/2}}+\frac {11 i}{96 a^2 d (a+i a \tan (c+d x))^{3/2}}+\frac {11 i}{64 a^3 d \sqrt {a+i a \tan (c+d x)}}-\frac {(11 i) \operatorname {Subst}\left (\int \frac {1}{2 a-x^2} \, dx,x,\sqrt {a+i a \tan (c+d x)}\right )}{64 a^3 d}\\ &=-\frac {11 i \tanh ^{-1}\left (\frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {2} \sqrt {a}}\right )}{64 \sqrt {2} a^{7/2} d}+\frac {11 i a}{36 d (a+i a \tan (c+d x))^{9/2}}-\frac {i a^2}{2 d (a-i a \tan (c+d x)) (a+i a \tan (c+d x))^{9/2}}+\frac {11 i}{56 d (a+i a \tan (c+d x))^{7/2}}+\frac {11 i}{80 a d (a+i a \tan (c+d x))^{5/2}}+\frac {11 i}{96 a^2 d (a+i a \tan (c+d x))^{3/2}}+\frac {11 i}{64 a^3 d \sqrt {a+i a \tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 1.71, size = 176, normalized size = 0.76 \[ -\frac {i e^{-11 i (c+d x)} \left (1+e^{2 i (c+d x)}\right )^{5/2} \sec ^3(c+d x) \left (\sqrt {1+e^{2 i (c+d x)}} \left (-460 e^{2 i (c+d x)}-1338 e^{4 i (c+d x)}-2416 e^{6 i (c+d x)}-4618 e^{8 i (c+d x)}+315 e^{10 i (c+d x)}-70\right )+3465 e^{9 i (c+d x)} \sinh ^{-1}\left (e^{i (c+d x)}\right )\right )}{161280 a^3 d \sqrt {a+i a \tan (c+d x)}} \]

Antiderivative was successfully verified.

[In]

Integrate[Cos[c + d*x]^2/(a + I*a*Tan[c + d*x])^(7/2),x]

[Out]

((-1/161280*I)*(1 + E^((2*I)*(c + d*x)))^(5/2)*(Sqrt[1 + E^((2*I)*(c + d*x))]*(-70 - 460*E^((2*I)*(c + d*x)) -
 1338*E^((4*I)*(c + d*x)) - 2416*E^((6*I)*(c + d*x)) - 4618*E^((8*I)*(c + d*x)) + 315*E^((10*I)*(c + d*x))) +
3465*E^((9*I)*(c + d*x))*ArcSinh[E^(I*(c + d*x))])*Sec[c + d*x]^3)/(a^3*d*E^((11*I)*(c + d*x))*Sqrt[a + I*a*Ta
n[c + d*x]])

________________________________________________________________________________________

fricas [A]  time = 0.52, size = 316, normalized size = 1.36 \[ \frac {{\left (-3465 i \, \sqrt {\frac {1}{2}} a^{4} d \sqrt {\frac {1}{a^{7} d^{2}}} e^{\left (9 i \, d x + 9 i \, c\right )} \log \left (4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{4} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{4} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{7} d^{2}}} + a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + 3465 i \, \sqrt {\frac {1}{2}} a^{4} d \sqrt {\frac {1}{a^{7} d^{2}}} e^{\left (9 i \, d x + 9 i \, c\right )} \log \left (-4 \, {\left (\sqrt {2} \sqrt {\frac {1}{2}} {\left (a^{4} d e^{\left (2 i \, d x + 2 i \, c\right )} + a^{4} d\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {1}{a^{7} d^{2}}} - a e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}\right ) + \sqrt {2} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} {\left (-315 i \, e^{\left (12 i \, d x + 12 i \, c\right )} + 4303 i \, e^{\left (10 i \, d x + 10 i \, c\right )} + 7034 i \, e^{\left (8 i \, d x + 8 i \, c\right )} + 3754 i \, e^{\left (6 i \, d x + 6 i \, c\right )} + 1798 i \, e^{\left (4 i \, d x + 4 i \, c\right )} + 530 i \, e^{\left (2 i \, d x + 2 i \, c\right )} + 70 i\right )}\right )} e^{\left (-9 i \, d x - 9 i \, c\right )}}{40320 \, a^{4} d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="fricas")

[Out]

1/40320*(-3465*I*sqrt(1/2)*a^4*d*sqrt(1/(a^7*d^2))*e^(9*I*d*x + 9*I*c)*log(4*(sqrt(2)*sqrt(1/2)*(a^4*d*e^(2*I*
d*x + 2*I*c) + a^4*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^7*d^2)) + a*e^(I*d*x + I*c))*e^(-I*d*x - I*c
)) + 3465*I*sqrt(1/2)*a^4*d*sqrt(1/(a^7*d^2))*e^(9*I*d*x + 9*I*c)*log(-4*(sqrt(2)*sqrt(1/2)*(a^4*d*e^(2*I*d*x
+ 2*I*c) + a^4*d)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt(1/(a^7*d^2)) - a*e^(I*d*x + I*c))*e^(-I*d*x - I*c)) +
 sqrt(2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*(-315*I*e^(12*I*d*x + 12*I*c) + 4303*I*e^(10*I*d*x + 10*I*c) + 7034
*I*e^(8*I*d*x + 8*I*c) + 3754*I*e^(6*I*d*x + 6*I*c) + 1798*I*e^(4*I*d*x + 4*I*c) + 530*I*e^(2*I*d*x + 2*I*c) +
 70*I))*e^(-9*I*d*x - 9*I*c)/(a^4*d)

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \frac {\cos \left (d x + c\right )^{2}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {7}{2}}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="giac")

[Out]

integrate(cos(d*x + c)^2/(I*a*tan(d*x + c) + a)^(7/2), x)

________________________________________________________________________________________

maple [B]  time = 1.24, size = 422, normalized size = 1.81 \[ \frac {\sqrt {\frac {a \left (i \sin \left (d x +c \right )+\cos \left (d x +c \right )\right )}{\cos \left (d x +c \right )}}\, \left (71680 i \left (\cos ^{10}\left (d x +c \right )\right )+71680 \sin \left (d x +c \right ) \left (\cos ^{9}\left (d x +c \right )\right )-43520 i \left (\cos ^{8}\left (d x +c \right )\right )-7680 \sin \left (d x +c \right ) \left (\cos ^{7}\left (d x +c \right )\right )+512 i \left (\cos ^{6}\left (d x +c \right )\right )+5632 \left (\cos ^{5}\left (d x +c \right )\right ) \sin \left (d x +c \right )+3465 i \cos \left (d x +c \right ) \arctan \left (\frac {\left (i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )\right ) \sqrt {2}}{2 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+1056 i \left (\cos ^{4}\left (d x +c \right )\right )+3465 i \arctan \left (\frac {\left (i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )\right ) \sqrt {2}}{2 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+3465 \arctan \left (\frac {\left (i \cos \left (d x +c \right )-i-\sin \left (d x +c \right )\right ) \sqrt {2}}{2 \sin \left (d x +c \right ) \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}}\right ) \sin \left (d x +c \right ) \sqrt {2}\, \sqrt {-\frac {2 \cos \left (d x +c \right )}{1+\cos \left (d x +c \right )}}+7392 \left (\cos ^{3}\left (d x +c \right )\right ) \sin \left (d x +c \right )+4620 i \left (\cos ^{2}\left (d x +c \right )\right )+13860 \cos \left (d x +c \right ) \sin \left (d x +c \right )\right )}{80640 d \,a^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(7/2),x)

[Out]

1/80640/d*(a*(I*sin(d*x+c)+cos(d*x+c))/cos(d*x+c))^(1/2)*(71680*I*cos(d*x+c)^10+71680*sin(d*x+c)*cos(d*x+c)^9-
43520*I*cos(d*x+c)^8-7680*sin(d*x+c)*cos(d*x+c)^7+512*I*cos(d*x+c)^6+5632*cos(d*x+c)^5*sin(d*x+c)+3465*I*2^(1/
2)*cos(d*x+c)*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*arctan(1/2*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d
*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+1056*I*cos(d*x+c)^4+3465*I*(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2)*a
rctan(1/2*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))+3465*arctan(1/2
*(I*cos(d*x+c)-I-sin(d*x+c))/sin(d*x+c)/(-2*cos(d*x+c)/(1+cos(d*x+c)))^(1/2)*2^(1/2))*sin(d*x+c)*2^(1/2)*(-2*c
os(d*x+c)/(1+cos(d*x+c)))^(1/2)+7392*cos(d*x+c)^3*sin(d*x+c)+4620*I*cos(d*x+c)^2+13860*cos(d*x+c)*sin(d*x+c))/
a^4

________________________________________________________________________________________

maxima [A]  time = 0.59, size = 195, normalized size = 0.84 \[ \frac {i \, {\left (\frac {4 \, {\left (3465 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{5} - 4620 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{4} a - 1848 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{3} a^{2} - 1584 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{2} a^{3} - 1760 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )} a^{4} - 2240 \, a^{5}\right )}}{{\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {11}{2}} a^{2} - 2 \, {\left (i \, a \tan \left (d x + c\right ) + a\right )}^{\frac {9}{2}} a^{3}} + \frac {3465 \, \sqrt {2} \log \left (-\frac {\sqrt {2} \sqrt {a} - \sqrt {i \, a \tan \left (d x + c\right ) + a}}{\sqrt {2} \sqrt {a} + \sqrt {i \, a \tan \left (d x + c\right ) + a}}\right )}{a^{\frac {5}{2}}}\right )}}{80640 \, a d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)^2/(a+I*a*tan(d*x+c))^(7/2),x, algorithm="maxima")

[Out]

1/80640*I*(4*(3465*(I*a*tan(d*x + c) + a)^5 - 4620*(I*a*tan(d*x + c) + a)^4*a - 1848*(I*a*tan(d*x + c) + a)^3*
a^2 - 1584*(I*a*tan(d*x + c) + a)^2*a^3 - 1760*(I*a*tan(d*x + c) + a)*a^4 - 2240*a^5)/((I*a*tan(d*x + c) + a)^
(11/2)*a^2 - 2*(I*a*tan(d*x + c) + a)^(9/2)*a^3) + 3465*sqrt(2)*log(-(sqrt(2)*sqrt(a) - sqrt(I*a*tan(d*x + c)
+ a))/(sqrt(2)*sqrt(a) + sqrt(I*a*tan(d*x + c) + a)))/a^(5/2))/(a*d)

________________________________________________________________________________________

mupad [F]  time = 0.00, size = -1, normalized size = -0.00 \[ \int \frac {{\cos \left (c+d\,x\right )}^2}{{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{7/2}} \,d x \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(cos(c + d*x)^2/(a + a*tan(c + d*x)*1i)^(7/2),x)

[Out]

int(cos(c + d*x)^2/(a + a*tan(c + d*x)*1i)^(7/2), x)

________________________________________________________________________________________

sympy [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(cos(d*x+c)**2/(a+I*a*tan(d*x+c))**(7/2),x)

[Out]

Timed out

________________________________________________________________________________________